[^0]Acta Cryst. (1987). C43, 24-26

Structure of μ-Diethyldithiophosphinato-tris(diethyldithiophosphinato)-tri- μ-thio- μ_{3}-thio-triangulo-trimolybdenum(IV)

By Hartmut Wunderlich
Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstrasse 1, D-4000 Düsseldorf, Federal Republic of Germany

(Received 25 February 1986; accepted 29 July 1986)

Abstract

Mo}_{3} \mathrm{~S}_{4}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{PS}_{2}\right\}_{4}\right], M_{r}=1028 \cdot 9\), monoclinic, $\quad P 2_{1} / n, \quad a=11.791$ (2),$\quad b=20.721$ (3),$\quad c=$ $16 \cdot 100$ (3) $\AA, \beta=107 \cdot 50(1)^{\circ}, V=3752$ (1) $\AA^{3}, Z=$ 4, $\quad D_{m}=1.79, \quad D_{x}=1.82 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \bar{\alpha}, \quad \lambda=$ $0.71069 \AA, \mu=1.79 \mathrm{~mm}^{-1}, F(000)=2056,6483$ observed unique reflections (room temperature), $R=$ 0.037 (316 parameters). The three Mo atoms together with four bridging S atoms form a trinuclear cluster with local symmetry close to $C_{3 v^{2}}$. Each of the Mo atoms is chelated by a bidentate diethyldithiophosphinato ligand; two Mo atoms are bridged in addition by the remaining diethyldithiophosphinato residue. Preliminary results have been reported [Keck, Kuchen, Mathow \& Wunderlich (1982). Angew. Chem. 94, 927-928; Angew. Chem. Int. Ed. Engl. 21, 929].

Introduction. Trinuclear complexes of transition metals containing sulfur ligands are of well known importance in bioinorganic chemistry (Müller, Diemann, Jostes \& Bögge, 1981). A classification of different trinuclear clusters containing no (type A), one (type B) or two (type C) capping μ_{3}-ligands has been reported by Müller, Jostes \& Cotton (1980). Mo clusters of type B are documented in two forms: in type $B 1$ three single μ-S atoms are bridging each side of the Mo triangle as in the cation $\left[\mathrm{Mo}_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{~S}_{4}\right]^{+}$(Vergamini, Vahrenkamp \& Dahl, 1971), while in type $B 2$ these three S atoms are replaced by S_{2} groups as in $\mathrm{Mo}_{3} \mathrm{~S}_{7} \mathrm{Cl}_{4}$ (Marcoll, Rabenau, Mootz \& Wunderlich, 1974). In these two as well as in all structures of type B reported thereafter the three Mo atoms have equal coordination numbers. In the compound under study the bridging of the three Mo-Mo bonds was under debate: There was either a cluster of type $B 1$ containing one dithio-
phosphinato ligand as an additional bridge (thus unequal coordination numbers of the Mo atoms) or one of type C with two Mo-Mo bonds bridged by a single S atom while the third side of the triangle is bridged by the dithiophosphinato group.

Experimental. The preparation of the title compound is reported by Keck, Kuchen \& Mathow (1986) and yielded black opaque well shaped crystals of monoclinic habit. A crystal of approximately $0.3 \times$ $0.3 \times 0.4 \mathrm{~mm}$ was used for the refinement of the lattice parameters (15 reflections, $33<2 \theta<40^{\circ}$, Mo K α radiation, crystal monochromator, Syntex $P 2_{1}$) as well as for the data collection. From systematic absences the space group $P 2_{1} / n$ (cell choice 1 with fully reduced mesh, International Tables for Crystallography, 1983) has been determined. Density, determined by flotation, yielded $Z=4$ formula units per cell. The intensities of 7955 reflections [Mo $K \alpha,(\sin \theta) / \lambda<0.6168 \AA^{-1}$] were measured using an ω scan with variable speeds and a scan width of 0.6°. Because of the large amount of data measurement was performed at an average rate of 115 reflections per hour. Compared with usual data collection (ca 40 refl. h^{-1}) this should not increase the positional e.s.d.'s by more than about 20% (Hope \& Nichols, 1981). The indices ranged from 0 to $h=14$, $k=25$ and from $l=-19$ to $l=18$, the intensities of three standard reflections ($7,9, \overline{1}, 783, \overline{4}, 13, \overline{4}$) did not show significant variations. Seven low-order reflections with too high intensities, systematically absent reflections, and symmetry-equivalent ones have been eliminated. 456 reflections showed background imbalances of more than $2: 1$ of which in general the higher value was in error (probably multiple reflec-
© 1987 International Union of Crystallography
tions) and was replaced by the lower value (Wunderlich, 1986). In a later stage of the refinement 28 weak reflections showed $F_{o} \gg F_{c}$ and were eliminated. The final set of data contained 7341 reflections (6483 observed and 858 unobserved, $I<1.96 \sigma_{I}$). No absorption correction was applied ($\mu=1.79 \mathrm{~mm}^{-1}$).

From direct methods (EXTL, MULTAN) 12 heavy atoms were localized; the structure was completed and refined in the usual way. 29 H atoms could be located from difference electron densities, the remaining 11 H atoms were constructed. All H atoms were added as fixed-atom contributions. The final refinement (316 parameters) on F converged with all $\Delta / \sigma<0 \cdot 1, R$ $=0.037(0.043)$, and $w R=0.062(0.063)$ for the observed (all) data at a minimum of $S=2 \cdot 1$. The weighting scheme was $w=1 /\left(\sigma_{F}^{2}+0.0004 F^{2}\right)$, scattering factors were taken from Cromer \& Waber (1974) and corrections for anomalous dispersion (Cromer \& Liberman, 1974) of Mo, S, and P were included. Residual electron densities ranged from -0.6 to $+0.8 \mathrm{e} \AA^{-3}$. The final parameters of the non- H atoms are listed in Table 1.* The anisotropic displacement parameters are in the expected range except those of the ethyl groups at $\mathrm{P}(1)$ which show a tendency to disorder compensated by enlarged displacement parameters. All calculations were carried out with a local modified version of the program system EXTL (Syntex, 1976).

Discussion. Fig. 1 shows one molecule with bond lengths. The bond angles of the three Mo atoms are given in Table 2, whilst the angles at the remaining non-H atoms have been deposited. The molecule forms a cluster of type $B 1$ with a dithiophosphinato residue bridging the bond $\mathrm{Mo}(1)-\mathrm{Mo}(2)$. This residue squeezes the $\mathrm{Mo}_{3} \mathrm{~S}_{4}$ core by shortening the bond $\mathrm{Mo}(1)-\mathrm{Mo}(2)$ to 2.735 (1) \AA which is significantly shorter (though between the Mo atoms of higher coordination number) than the bonds $\mathrm{Mo}(1)-\mathrm{Mo}(3)$ with 2.758 (1), $\mathrm{Mo}(2)-$ $\mathrm{Mo}(3)$ with 2.760 (1) \AA, and all Mo-Mo bonds reported for a trinuclear cluster containing the same core (Müller, Jostes \& Cotton, 1980). The squeezing is paralleled by enlarged bond angles within the fivemembered ring [108.4 (1), 114.0 (1), and $107.0(1)^{\circ}$ at atoms $S(41), P(4)$, and $S(42)$, respectively] as well as by a reduction of bond angles $\mathrm{Mo}(1)-\mathrm{S}-\mathrm{Mo}(2)$. To minimize this squeezing the five-membered ring adopts an envelope conformation [atoms $\mathrm{Mo}(1), \mathrm{Mo}(2), \mathrm{S}(41)$, and $\mathrm{S}(42)$ planar within $0.01 \AA$, atom $\mathrm{P}(4) 0.72 \AA$ out

[^1]Table 1. Parameters of the non-H atoms with e.s.d.'s in parentheses

The equivalent isotropic temperature factors (\AA^{2}) have been calculated by $U_{\text {eq }}=1 / 24 \pi^{2}\left(B_{11} a^{* 2} a^{2}+B_{12} a^{*} b^{*} a b \cos \gamma+\ldots\right)$.

	x	y	z	$U_{\text {eq }}$
Mo(1)	0.01551 (3)	0.43435 (2)	0.18179 (3)	0.0255
Mo(2)	0.02644 (3)	0.32099 (2)	0.09748 (3)	0.0255
Mo(3)	0.20344 (3)	0.41198 (2)	$0 \cdot 11693$ (3)	0.0258
S(1)	$-0.13077(10)$	0.39196 (6)	0.06542 (8)	0.0312
S(2)	0.09351 (11)	0.50194 (6)	0.09676 (8)	0.0320
S(3)	$0 \cdot 10989$ (11)	0.35833 (7)	-0.00639 (8)	0.0344
S(4)	$0 \cdot 16062$ (10)	0.35446 (6)	0.22944 (8)	0.0276
S(11)	-0.12595 (11)	0.52934 (6)	0.18481 (9)	0.0350
S(12)	0.13103 (13)	0.49555 (7)	0.32111 (9)	0.0418
S(21)	-0.09877 (12)	0.24708 (7)	-0.02565 (9)	0.0389
S(22)	$0 \cdot 15780$ (12)	0.21862 (7)	0.11752 (10)	0.0415
S(31)	0.33199 (11)	0.45833 (8)	0.02810 (9)	0.0401
S(32)	$0 \cdot 40074$ (12)	0.40985 (9)	0.22352 (10)	0.0512
S(41)	-0.09554 (12)	0.38807 (6)	0.28639 (9)	0.0369
S(42)	-0.08647 (13)	0.24838 (6)	0.17903 (9)	0.0377
P(1)	0.00374 (14)	0.56301 (7)	0.28783 (11)	0.0472
P (2)	0.03279 (12)	0.18144 (7)	0.01445 (9)	0.0350
$\mathrm{P}(3)$	0.46868 (12)	0.45701 (8)	0.13807 (10)	0.0395
$\mathrm{P}(4)$	-0.07128(12)	0.29122 (6)	0.29433 (9)	0.0317
C(11)	0.0768 (8)	0.6367 (4)	$0 \cdot 2558$ (8)	0.118
C(12)	0.0225 (10)	0.6956 (6)	0.2421 (7)	0.110
C(13)	-0.0509 (8)	0.5843 (5)	0.3757 (6)	0.091
C(14)	-0.1186 (13)	0.5410 (6)	0.4002 (8)	0.134
C(21)	0.0956 (6)	0.1626 (3)	-0.0725 (4)	0.048
C(22)	$0 \cdot 1940$ (8)	0.1123 (4)	-0.0495 (7)	0.087
C(23)	-0.0220 (6)	$0 \cdot 1060$ (3)	0.0448 (4)	0.051
C(24)	-0.1173 (8)	0.0747 (4)	-0.0303 (6)	0.079
C(31)	0.5180 (7)	0.5372 (4)	$0 \cdot 1777$ (5)	0.067
C(32)	0.4198 (10)	0.5787 (4)	$0 \cdot 1921$ (7)	$0 \cdot 100$
C(33)	$0 \cdot 5985$ (5)	0.4169 (3)	0.1264 (5)	0.058
C(34)	0.5772 (7)	0.3476 (4)	0.0985 (7)	0.084
C(41)	-0.1883 (5)	0.2588 (3)	0.3350 (4)	0.046
$\mathrm{C}(42)$	-0.1862 (7)	0.1852 (3)	0.3449 (6)	0.066
C(43)	0.0666 (5)	0.2684 (3)	0.3780 (4)	0.043
C(44)	0.0854 (7)	0.3026 (4)	0.4643 (5)	0.071

Fig. 1. The molecule of $\left[\mathrm{Mo}_{3} \mathrm{~S}_{4}\left\{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{PS}_{2}\right\}_{4}\right]$ in arbitrary crystallographic orientation with bond lengths (\AA). The e.s.d.'s are: Mo-Mo 0.001, Mo-S 0.001-0.002, S-P 0.002, P-C $0.006-0.010$, and $\mathrm{C}-\mathrm{C} 0.01-0.02 \AA$. The non- H atoms are represented by thermal ellipsoids of 50% probability (ORTEPII, Johnson, 1976); the radius of the H atoms was set to $B=1.5 \AA^{2}$.

Table 2. Bond angles $\left(^{\circ}\right)$ at the Mo atoms; e.s.d.'s are 0.01° for Mo-Mo-Mo, 0.03-0.04 ${ }^{\circ}$ for Mo-Mo-S, and $0.04-0.05^{\circ}$ for $\mathrm{S}-\mathrm{Mo}-\mathrm{S}$

Mo(1)	Mo(2)	Mo(3)	S(1)	S(2)	S(4)	S(11)	S(12)
Mo(3)	60.31						
S(1)	53.47	96.79					
S(2)	97.97	51.33	94.74				
S(4)	54.26	54.07	106.97	103.82			
S(11)	142.06	136.90	88.63	85.67	$160 \cdot 70$		
S(12)	139.65	97.90	164.64	90.96	85.40	77.57	
S(41)	96.46	143.09	89.22	164.46	$89 \cdot 30$	79.40	$81 \cdot 70$
Mo(2)	Mo(1)	Mo(3)	S(1)	S(3)	S(4)	S(21)	S(22)
Mo(3)	60.26						
S(1)	53.64	96.87					
S(3)	99.51	51.83	96.50				
S(4)	54-19	54.04	107.07	103.81			
S(21)	141.94	136.81	88.33	85.00	160.95		
S(22)	139.24	98.16	164.47	89.74	85.06	78.03	
S(42)	97.94	145.04	89.02	161.54	91.26	77.55	80.88
Mo(3)	Mo(1)	Mo(2)	S(2)	S(3)	S(4)	S(31)	
Mo(2)	59.43						
S(2)	54.46	99.63					
S(3)	100.39	53.84	$100 \cdot 04$				
S(4)	53.79	53.82	106.58	105.53			
S(31)	145.64	138.30	91.19	84.73	157.18		
S(32)	$116 \cdot 18$	$126 \cdot 57$	$120 \cdot 34$	$136 \cdot 15$	$80 \cdot 15$	$78 \cdot 50$	

of this plane] with the following torsion angles: $\mathrm{Mo}(1)-\left[1^{\circ}\right]-\mathrm{Mo}(2)-\left[-23^{\circ}\right]-\mathrm{S}(42)-\left[43^{\circ}\right]-\mathrm{P}(4)-$ $\left[-43^{\circ}\right]-S(41)-\left[21^{\circ}\right]-\mathrm{Mo}(1)$. The bridging residue reduces the maximal possible symmetry from $C_{3 v}$ to C_{s} [mirror plane through $\mathrm{Mo}(3), \mathrm{S}(4)$, and $\mathrm{S}(1)$] which is approximately fulfilled within the $\mathrm{Mo}_{3} \mathrm{~S}_{4}$ core but clearly disturbed by the organic ligands. The S atoms can be grouped into four structurally different kinds with averaged bond angles of $71.95(4)\left(\mu_{3}-S\right)$, 73.81 (4) (μ-S), 87.62 (7) (bidentate ligand) and 107.71 (7) ${ }^{\circ}$ (bridging ligand). The four dialkyldithiophosphinato ligands show the expected geometry as in
similar Mo complexes \{e.g. $\quad\left[\left(\mathrm{Et}_{2} \mathrm{PS}_{2}\right)_{3} \mathrm{Mo}_{3}{ }^{-}\right.$ $\left.\mathrm{S}\left(\mathrm{S}_{2}\right)_{3}\right]^{+} .\left(\mathrm{Et}_{2} \mathrm{PS}_{2}\right)^{-}$, Meyer \& Wunderlich (1982) $\}$; this includes the tendency to disorder within these ligands \{as in $\left[\mathrm{Cd}\left(\mathrm{Et}_{2} \mathrm{PS}_{2}\right)_{2}\right]$, Wunderlich (1986)\} which cannot be excluded for the ligand involving $P(1)$ of the present structure.

References

Cromer, D. T. \& Liberman, D. J. (1974). International Tables for X-ray Crystallography, Vol. IV, p. 149. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71-98. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Hope, H. \& Nichols, B. G. (1981). Acta Cryst. B37, 158-161.
International Tables for Crystallography (1983). Vol. A, pp. 35-37. Dordrecht: D. Reidel.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Keck, H., Kuchen, W. \& Mathow, J. (1986). Z. Anorg. Allg. Chem. 537, 123-132.
Keck, H., Kuchen, W., Mathow, J. \& Wunderlich, H. (1982). Angew. Chem. 94, 927-928; Angew. Chem. Int. Ed. Engl. 21, 929.

Marcoll, J., Rabenau, A., Mootz, D. \& Wunderlich, H. (1974). Rev. Chim. Minér. 11, 607-615.

Meyer, B. \& Wunderlich, H. (1982). Z. Naturforsch. Teil B, 37, 1437-1441.
Müller, A., Diemann, E., Jostes, R. \& Bögge, H. (1981). Angew. Chem. 93, 957-977; Angew. Chem. Int. Ed. Engl. 20, 934.

Müller, A., Jostes, R. \& Cotton, F. A. (1980). Angew. Chem. 92, 921-929; Angew. Chem. Int. Ed. Engl. 19, 875.
Syntex (1976). XTL/XTLE Structure Determination System. Syntex Analytical Instruments, Cupertino, California.
Vergamini, P. J., Vahrenkamp, H. \& Dahl, L. F. (1971). J. Am. Chem. Soc. 93, 6327-6329.
Wunderlich, H. (1986). Acta Cryst. C42, 631-632.

Structure of the Antitumour Agent Di- μ-acetato-(O)-bis[(2-pyridinecarbaldehyde thiosemicarbazonato)copper(II)]

By Colin F. Bell and Charis R. Theocharis
Department of Chemistry, Brunel University, Uxbridge, Middlesex UB8 3PH, England

(Received 5 February 1986; accepted 25 July 1986)

Abstract. $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{~S}\right)_{2}\right], \quad M_{r}=603.62$, triclinic, $\quad P \overline{1}, \quad a=8.834$ (1),$\quad b=8.989$ (1),$\quad c=$ 8.801 (1) $\AA, \quad \alpha=117.48$ (1),$\quad \beta=91.77$ (1),$\quad \gamma=$ $110.94(1)^{\circ}, \quad V=562.7(3) \AA^{3}, \quad Z=1, \quad D_{x}=$ $1.78 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=21.17 \mathrm{~cm}^{-1}$, $F(000)=306$, room temperature, final $R=0.0291$ for 2052 observed reflections. This crystal structure reveals that the title compound is in a dimeric form with the

0108-2701/87/010026-04\$01.50
two Cu^{2+} ions in an unusual distorted square-pyramidal coordination. There is no direct metal-metal bond. The two metallic atoms are linked by two bridging acetate groups.

Introduction. The tridentate ligand 2-(2-pyridinemethylene)hydrazinecarbothioamide (more commonly called 2-pyridinecarbaldehyde thiosemicarbazone

[^0]: Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
 McAuliffe, C. A., Niven, I. E. \& Parish, R. V. (1977). J. Chem. Soc. Dalton Trans. pp. 1901-1906.
 Olmstead, M. M., Farr, J. P. \& Balch, A. L. (1981). Inorg. Chim. Acta, 52, 47-54.
 Rheingold, A. L. \& Fultz, W. C. (1984). Organometallics, 3, 1414-1417.

 Roberts, G. L., Skelton, B. W., White, A. H. \& Wild, S. B. (1982a). Aust. J. Chem. 35, 2193-2201.
 Roberts, N. K., Skelton, B. W., White, A. H. \& Wild, S. B. (1982b). J. Chem. Soc. Dalton Trans. pp. 2093-2097.
 Roundhill, D. M., Roundhill, S. G. N., Beaulieu, W. B. \& BAGCHI, U. (1980). Inorg. Chem. 19, 3365-3373.
 Rutherford, N. M., Olmstead, M. M. \& Balch, A. L. (1984). Inorg. Chem. 23, 2833-2837.

[^1]: * Lists of structure factors, anisotropic displacement parameters, H -atom coordinates, and additional bond angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43294 (29 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

